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Abstract 

It is proved that  in euclidean n-space the maximum   M(p)    and 

minimum   m(p)    of a  fixed positive definite quadratic polynomial    Q 

on spheres with fixed center are both convex  functions of the radius    p 

of the sphere.      In the proof, which uses elementary calculus and a 

result of Forsythe ar.d Golub,    m"(p)    and    M" (p)    are shown to exist 

and lie in the interval    [2>u,£X ]   , where    ^.    are the eigenvalues of 

the quadratic  form of    Q .    iience    m"(p) > 0    and   M"(p) > 0 . 
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uununary 

Let A be a given symmetric, nonsinrular matrix of real elements 

and order n . Lc-c b be a given column vector of a real elements. 

For each real column n-vector    x ,  the nonhomop;oneous quadratic polynomial 

Q(x) =  (x-b)T A(x-b) 

(T    denotes transpose)  is a real number.    Let    ^i < \> < ••• < A     be 

the  (necessarily) real eigenvalues of   A .    Let    m(p)    be the minimum of 

Q(x)    on the sphere    S    = {x:   x x = p } , and let    M(p)    be the maximum 
r 

of    Q(x)    on    S    .    M. J.  D.  Powell asked the author whether    m(p)    is a 

convex    function of   p    when   A    is positive definite.    An affirmative 

answer is given by the theorem: 

(1) Theorem.    If   A    is positive definite  (i.e.,   if    0 < X ) , then 

m(p)    and   M(p)    are convex functions of   p ,  for all   p > 0 . 

Theorem (l) will follow from the following result: 

(2) Theorem.    Let   A    be any nonsingular matrix.    Then for    p > 0 , 

the second derivatives    m"(p)    and   M"(p)    both exist,  and 

b) mM(p)    >   2X1     jmd   M"(p)    > 2?^ . 

Equality occurs in  (3)  if and only if   Ab = A,b  .    Moreover, 

(U) m"(p)    <2Xn    and   r(p)    <    2An 

and equality occurs in (k)  if and only if   Ab = X b  . 

both 



I 
I 
I 

Heviev ol' Previous Work 

The proof of Theorem (2)  is based on techniques developed in Forcythe 

and Golub  [l], which dealt only with the cnse    p = 1   .    The relevant 

results of [l]  are now summarized and extended to general    p  . 

Jet    {u,,...,u }    he an orthonormal real set of eifjenvectors of   A , 

with    An.   = X.u,     (i - i,...,n)   .     Let    b = ^ b.u.   .     For any vector    x 

in    i'      at whicli    Q,(x)    is stationary with respect to    .'-    ,   there  is n real 

nijjnber    X    wi+h 

(5) A(x-b) = Ax 

(oj x x = p 

Letting    x -..■.  J] x u.  , we find from (5) t 

x.b. 
(7) x,  .    1  1 

hat 

so that  (6) becomet 

i      X^^-X 

n      X2b? 

1=1 (A.-xr 

For each ^iven vnTne of    p > 0 ,   equation  (6) determines  from 2 to    2n 

real  values of    X  . For each    X    so determined,   equation  (5)  determines om 

or more vectors    x (if all    b. / 0 ,   then    x      is unique).     For any    x    , 

wc nave 

(9) Q(xX)    =    f(x)      , 

whe-rc 
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o JL  y^s 
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Now    Q(x)    is stationary with respect to    S      at any    x    .    For given    p , 

let A = A (p) and A = A (p) be the sinallest resp. largest values 

of X satisfying equation (8). Theorem (l+,l) of [l] states that f(A 

and    f(A  )    are the minimum resp. maximum values of    Q(x)    on    C    . 
r( D 

Much of [l] was devoted to the singular cases where come b. = 0 . 

For the present investigation, where we are interested only in the 

values of Q(x) , we simply omit from the sums (8) and (lö) all terms 

with b. = 0 , and reduce n , if necessary. Having done that, it is then 

clear from (8) that, for any p , 

(11) AL<^1 and \<AR 

This concludes the necessary summary of [l]. 

As a digression,   the author notes that the main theorems  (2.7) and 

(U. l) of [l] were proved in [l] by studying    f(>,)    and   g{\)    for complex 

values of   X .    In late 1965,  Professor W. Kahan  f unpublished]  showed us 

how to prove those theorems more simply, using only real values of   >  . 

Proof of Theorem (2). 

With the above apparatus our problem is reduced to an exercise in the 

differential calculus.    For each   p > 0   we determine a unique Lagrange 

multiplier   > = >v(p)     from  (8) — eituer the minimal    A     or maximal    A    , 

For ease of exposition,   suppose   ^(p) = A    .    Then the function 

(12) m (p)    =    f(A(p)) 

3 



is determined from (10).     Since    f(x)    and   g(x)    are; analytic for 

"K < "K    ,  the  function   m(p)    has derivatives of all order.    We shall 

determine    m"(p)    by calculus.    To simplify  some expressions, we 

introduce the abbreviations 

2 2 
i  i (15) a   - £   —^ (p - 2, 5, k)    . 

Differentiating (10) and simplifying, we find; 

ilk) f = 2Aa3  ; 

d2 
(15) —i = 2a + 6Aa, 

dA     ^ 

Now equation (8)  states that, when    A = A(p)  , 

(16) a2 = P2 

Differentiating  (8)  twice with respect to    p    yields 

(17) |a3    =   p    ; 

2 
(18) ^a?)+ 3(g)   au   «    i    . 

dp      ' ' 

Solving  (17) and (lB)  in turn,  we find 

(10) 

(20) 

ax _ ^_ , 
dP a-, 

0 

d'A ] ^\ 

dp' Q3 
r-, 
L . a.. 
j 
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Now,  by the chain rule, 

dm df     d^ 
dp dX     dp 

and 

(21) 
d2m d2f /d^v2      df      df> 

dp2   "   :x2 ^j      ^ " dp2 

We now substitute into (2l) the expressions (U), (15), (19), and (20). 

We find that 

(22) r(p) B £| B (2a3 + 6^) ßl + 2>.a5( J. . 
3JL^ 5 

dp2 a. 

Hence 

|ni"(p) ^ + C " a" (Xa3 + ^^ '  by tä' 
simplifying, 

§m"(p) i. f j¥L 
a3    i-l(V^)3     ' 

or 

(23) |m"(p)    =     t 

2 2 
^bi 

i-1    i\'-K)' 

Formula  (25)   is the end of our calculus exercise.    In it,    >    is 

determined from solving  (8).    Note by (ll)  that the factors    (Xj-X)      all 

-lave the sr'.me sign for    i » 1, 2,...,  n ,  whether    "K m A     or   X ■ A_  . 

Hence   ^ m"(p)    is a weighted average with positive weights of the    {X.} . 



I It followB that   ~ m"(p) > }\1 , with equality only when all   "h.    in (25) 

are  dCtunl to   X.  ,  i.e.,   if    b.  «= 0    for   ^.  > A,   .    This proves  (5), 
1 1 x 1 

and  (1+)  is proved analogously.    This concludes the proof of Theorem (2). 

It would be desirable to have a simple geometrical proof. 

I 
I 
I What if   A    is singular? 

If   A    is singular,  that  is,   if some    'A.  =0 ,  the situation is 

somewhat more complicated,   just as the case where  some    A.b.  = 0    is 

complicated in [l].    Theorem  (2)  fails to hold for semidefinite matrices, 

because    m"(p)    may not exist for some   p ,  as the following example shows; 

2 T 
{2k)      Example.    For    n = 2    let    Q(x) S (x -l)    , where    x s (x ,Xp) 

Then 

>(p) 

r i-p   ,   0 < p < 1 , 

\o      ,    1 < p <«  , 

so    m"(i)    does not exist. 

If    A1  B 0 ,  the  Lagrange multiplier remains at    A « 0    for all 

sufficiently large    p  . 

Theorem (l) can easily be extended to semidefinite matrices by 

continuity.    We have 

(25)      Theorem.    If   A    is positive semidefinite  (i.e.,  if    0 < A,   ), 

then both    m(p)    and    M(p)    are convex functions of    p    for    p > 0  . 

In proof, we note that    m(p)    and   M(p)    are continuous functions of 

the elements of   A  .    If   A    is semidefinite,   it can be approximated by ?. 

definite matrix   A„ ,   for which    m.    and   M.    are  convex, with    ||A-AJ| < £  . 

Letting    £ -♦ 0 , we  find that    m ■ lim m„    and    M ■ lim M-    are convex. 

6 
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